Two approaches (and a third) to automating the debt collection process

By on June 7th, 2016 in Industry Insights, Machine Learning
Two approaches (and a third) to automating the debt collection process

Debt collection and account receivable departments often start with one person contacting late customers and evolve from there. Even third party collection agencies grow this way as they get more business. As a result, most collection departments are comprised of large teams of operators trying to negotiate with customers. Data science teams that are tasked with improving performance and profitability usually approach the task in one of two ways: process automation or agent-independent decision automation.

Process Automation is the effort to automate manual tasks done by collection agents, replacing them with an automated process or a self-service portal. This may mean skip tracing, logging payments, or queuing up phone numbers to call. The data science team acquires data sources or builds a process that replaces manual work with automated one, reducing the amount of time an agent spends per case. It’s about optimizing agent time on the phone, making sure that every action an agent takes is a high yield one, while busy work is replaced by some level of automation.

Decision automation means trying to teach a machine how to make the same quality of decision an agent makes in the collection process. For example: how to talk to debtors, what to tell them, how to respond to their issues. Because most agents have a hard time explaining in detail why they made one decision and not the other (they “just know”), often data science teams treat agents as an unreliable source of information. The team determines what they are trying to optimize – for example, right-party contact or the number of calls ending with a payment. They then build models that optimize these metrics, but without asking agents for feedback – only looking at long-term liquidation results.

While both approaches are important and are often used at TrueAccord as well, there’s a third one that often gets overlooked because data scientists and agents don’t interact often: Agent Dependent Decision Automation, or Expert Based Automation.

Interested to learn more? Pick up our free eBook: Automating Debt Collection 101